
Finite-difference-based multiple-relaxation-times lattice Boltzmann model for binary mixtures

Lin Zheng, Zhaoli Guo,* Baochang Shi, and Chuguang Zheng
National Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China

�Received 8 June 2009; revised manuscript received 6 October 2009; published 20 January 2010�

In this paper, we propose a finite-difference-based lattice Boltzmann equation �LBE� model with multiple-
relaxation times �MRT�, in which the distribution functions of individual species evolve on a same regular
lattice without any interpolations. Furthermore, the use of the MRT enables the model more flexible so that it
can be applied to mixtures of species with different viscosities and adjustable Schmidt number. Some numeri-
cal tests are conducted to validate the model, the numerical results are found to agree well with analytical
solutions/or other numerical results, and good numerical stability of the proposed LBE model is also observed.
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I. INTRODUCTION

Diffusion process plays an important role in many practi-
cal applications such as enhanced oil recovery, chemical re-
actions, pollutant dispersion. Owing to the presence of com-
plex geometries and/or multiple phases with large range of
time and space scales appearing in these systems, it is diffi-
cult for the traditional methods based on the Navier-Stokes
equations to describe the diffusion phenomena. On the other
hand, it is well understood that diffusion on the macroscopic
level is the result of microscopic interactions between mol-
ecules. Therefore, if we can design a model to describe these
microscopic interactions correctly at the microscopic level,
the macroscopic diffusion phenomena can be captured. The
lattice Boltzmann equation �LBE� method is one of such
mesoscopic models, and has shown great potentials for simu-
lating such complex systems �1–3�.

In the literature, LBE has been successfully applied to
single component flows, while for binary mixtures it still
needs more clarifications. Although some LBE models
�4–21� have been proposed for binary mixtures, most of
them �4–13� are based on single-fluid approach with a
Bhatnagar-Gross-Krook �BGK� collision operator �22,23�. In
this approach, the averaged effect due to the collisions be-
tween molecules is described by a total effective BGK colli-
sion operator and each species is forced to relax toward the
mixture equilibrium state. However, the use of BGK ap-
proximation usually leads to fixed Prandtl and Schmidt num-
bers. To overcome these limitations, some LBE models
�14–21� based on two-fluid approach have been proposed, in
which each species relaxes to its equilibrium, and some cross
couplings between different species are included in the evo-
lution of each species. For instances, some force coupling
LBE models �14,15� have been proposed based on a linear-
ized kinetic theory �24�. Alternatively, in Refs. �18,19�, the
authors proposed a binary and a multicomponent LBE mod-
els based on the concept of quasiequilibrium, respectively.
Both models have an adjustable Schmidt number, but when
the local Schmidt number is higher or lower than a critical
value, the quasiequilibrium for each species must be changed
locally.

Recently, Asinari �20� pointed out that it was important to
consider the indifferentiability principle �25� in LBE for bi-
nary mixtures. With this in mind, he proposed a viscous cou-
pling two-fluid LBE model based on Hamel’s model �26�,
and further developed a LBE model with multiple-relaxation
times �MRT� �21�. In both models, two collision operators
are used to describe the self-collision and cross-collision be-
tween particles, respectively. However, as pointed out in Ref.
�13�, for mixtures consisting of more than two species, it
would be rather tedious to describe the cross-collision terms
among different species at the same time. Therefore, they
regrouped the split-collisional terms into one global collision
operator which was virtually a redefinition of the local spe-
cies equilibrium. Nevertheless, this MRT model is limited to
mixtures with identical individual viscosities.

Another problem in most of the existing LBE models for
binary mixtures comes from the difference of molecular
weights. As known, in LBE the particle speeds of different
species depend on the molecular weights. Therefore, the for-
mulation of standard LBE for single-component fluids
should be modified to reflect this difference. In the literature
three strategies have been proposed to this end, i.e.,
modified-equilibrium method �5,13,21�, two-lattices method
�16,18�, and finite-difference �FD� method �8,15�. In
modified-equilibrium models the standard equilibrium distri-
bution function is reformulated by making the ratio of rest to
moving particles adjustable according to the molecular
weights. With such a modification, the particles of different
species can move on the same lattice. However, this type of
LBE models usually leads to identical individual shear vis-
cosities �13,21�. In the two-lattice models �16,18�, particles
of different species evolve on two lattices with different grid
spacing, and interpolation is necessary during the evolution.
The FD-LBE models utilize some FD schemes to describe
the evolutions of both species so that one same lattice can be
used. In the model of Ref. �8�, the particle collisions are
conducted as usual, but a Lax-Wendroff scheme is employed
to implement the streaming process. However, the shear vis-
cosity and diffusivity of the model cannot be tuned freely
due to the use of single-fluid formulation with the BGK
model. On the other hand, the model in Ref. �15� solves the
discrete velocity model based on a two-fluid formulation for
mixtures using an upwind scheme.

In this paper, we aim to propose an alternative LBE model
for binary mixtures with different molecular weights. The*Corresponding author; zlguo@hust.edu.cn
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model adopts a global MRT collision operator and realizes
the streaming process with the Lax-Wendroff scheme. The
MRT collision enables the model to be applicable to mix-
tures with different individual viscosities and an adjustable
Schmidt number, while the use of the Lax-Wendroff scheme
makes the particles to be able to stream on the same lattice.

The rest of the paper is organized as follows. In Sec. II,
the model is described, and a detailed Chapman-Enskog pro-
cedure analysis is proposed in Sec. III; boundary conditions
for the model are discussed in Sec. IV; some numerical tests
are conducted in Sec. V, and finally a brief summary is pre-
sented in Sec.VI.

II. MULTIPLE-RELAXATION-TIME LATTICE
BOLTZMANN MODEL

Without loss of generality, here we consider two-
dimensional flows. A discrete velocity Boltzmann equation
with MRT collision operator for a binary mixture fluid can be
written as

� f�i

�t
+ c�i · �f�i = �

�=a,b
S���f�i − f��i

�eq�� + F�i, �� = a,b� ,

�1�

where f�i�x , t� is the distribution function for species � mov-
ing with a discrete velocity c�i at point x and time t, S�� is
the self-collision matrix, S��� is the cross-collision matrix
between species � and �� ������, F�i is the forcing term
accounting for external body force, f��i

�eq� is the equilibrium
distribution function given by

f��i
�eq� =

��

2�R�T��
�eq�exp�−

�c�i − u��
�eq��2

2R�T��
�eq� � ,

where �� is the density of species �, R�=kB /m� �kB is the
Boltzmann constant, m� is the mass weight�, u��

�eq� and T��
�eq�

are the parameters that are not necessarily the fluid velocity
and temperature, respectively. Considering the irreversible
thermodynamics and the Onsager relation �27�, one can take
u���

�eq� =u and T���
�eq� =T, where u and T are the velocity and

temperature of the mixture. It should be mentioned that the
definitions of u and T are the key issues in BGK models. In
order to be consistent with the results of the full Boltzmann
equations, the following definitions should be used �28�:

u = u���
�eq� =

m�u� + m��u��

m� + m��
, �2a�

T = T���
�eq� = T� +

2m�m��

�m� + m���
2��T�� − T�� +

m��

6kB
�u�� − u��2� ,

�2b�

where u� and T� are the velocity and temperature of the
species �. However, as pointed out in Ref. �25�, if the mix-
ture is consist of identical species, the above definition of u
for the BGK models contradicts the indifferentiability prin-
ciple, and in Ref. �13� the authors argued that the indifferen-

tiablity principle is more important for the hydrodynamic
modeling of the mixtures. With this in mind, to maintain the
indifferentiability principle, we use the following definition
of the mixture velocity

u =
��u� + ���u��

�� + ���
. �3�

For mixtures consisting of more than two species, it
would be rather tedious to describe the cross-collision terms
among different species in Eq. �1�, which was also noticed in
Ref. �13�. Therefore, in the present study we will choose
u��

�eq�=u, and assume the mixture is isothermal, i.e., T��
�eq�=T,

just as adopted in previous studies �8,13,22�. With these as-
sumptions we can combine the self-collision term and cross-
collision term into a global one, in which the effect of the
cross collision is included through the barycentric velocity u
in the equilibrium distribution function �8,13,22�. With the
above arguments, the discrete velocity model �DVM� �Eq.
�1�� can be written as

� f�i

�t
+ c�i · �f�i = S��f�i − f�i

�eq�� + F�i, �4�

where S�=��S�� is an effective collision matrix, and the
global equilibrium distribution function f�i

�eq� and the forcing
term F�i are, respectively, given by �29,30�

f�i
�eq� = �i���1 +

c�i · u

R�T
+

1

2
� �c�i · u�2

�R�T�2 −
�u · u�
R�T

�	 ,

F�i = �i��� c�i · a�

R�T
+

�c�i · u��c�i · a��
�R�T�2 −

a� · u

R�T
� , �5�

where �i are weights associated with the discrete velocities,
and a� is the corresponding external force acceleration. In
this work we will consider the two-dimensional nine-velocity
�D2Q9� model, in which the discrete velocities for each spe-
cies are given by c�i=c�ci with c�=
3R�T being the molecu-
lar speed for species � and

ci = ��0,0� , i = 0

�cos��i − 1��/2�,sin��i − 1��/2�� , i = 1 – 4

�cos��2i − 9��/4�,sin��2i − 9��/4��
2, i = 5 – 8
�
�6�

The corresponding weights of the D2Q9 model are defined
as �0=4 /9, �1–4=1 /9 and �5–8=1 /36.

The densities of each species and the gas properties of
mixtures �� and u� are defined respectively as the velocity
moments of distribution functions

�� = �
i

f�i, � = �
�

��, �u = �
�i

c�i f�i, �7�

We now solve the evolution equation �Eq. �4�� using a
time-splitting scheme, then Eq. �4� can be decomposed into
two subprocesses, i.e., the collision process,

ZHENG et al. PHYSICAL REVIEW E 81, 016706 �2010�

016706-2



� f�i

�t
= S��f� − f�

�eq�� + F�i, �8�

and the streaming process,

� f�i

�t
+ c�i · �f�i = 0, �9�

As shown in Refs. �31–34�, the collision subprocess can be
carried out in the moment space. To this end, we first define
some moments m� based on the distributions f��x , t� through
a linear transformation,

m� = Mf� = �m�0,m�1, ¯ ,m�8�T,

f� = M−1m� = �f�0, f�1, ¯ , f�8�T,

where M is a linear transformation given as �32�,

M =
1 1 1 1 1 1 1 1 1

− 4 − 1 − 1 − 1 − 1 2 2 2 2

4 − 2 − 2 − 2 − 2 1 1 1 1

0 1 0 − 1 0 1 − 1 − 1 1

0 − 2 0 2 0 1 − 1 − 1 1

0 0 1 0 − 1 1 1 − 1 − 1

0 0 − 2 0 2 1 1 − 1 − 1

0 1 − 1 1 − 1 0 0 0 0

0 0 0 0 0 1 − 1 1 − 1

� .

�10�

With the above relations, the collision process �Eq. �8��
can be mapped onto moment space as

�m�

�t
= S̃��m� − m�

�eq�� + F̃�. �11�

Discretizating the above equation using the explicit first or-
der Euler scheme leads to

m�
+ = m� − �tS̃��m� − m�

�eq�� + �tF̃�, �12�

where m�
+ =Mf�

+ is the postcollision moments with f�
+ being

the postcollision distribution function, F̃�=MF� is the mo-

ments of the forcing term, S̃�=MS�M−1 is the corresponding
relaxation matrix,

S̃� = diag�s̃�1, s̃�2, ¯ , s̃�9� , �13�

where s̃�i �i=1–9� is the relaxation rate for species �, and
m�

�eq�=Mf�
�eq� is the equilibrium in the moment space,

m�
�eq� = Mf�

�eq� =
��

���− 2 + 3u2/c�
2�

���1 − 3u2/c�
2�

��ux/c�

− ��ux/c�

��uy/c�

− ��uy/c�

���ux
2 − uy

2�/c�
2

���uxuy�/c�
2

� . �14�

For the streaming process, several methods �8,16,18� have
been proposed to solve this convection equation. For in-
stance, in Refs. �16,18�, the authors suggested to use the
standard streaming process for both species on two lattices,
and exchange information between lattices with a second-
order or higher order interpolation schemes at each time step,
which is a rather tedious procedure. On the other hand, since
the physical symmetry and lattice symmetry can be decou-
pled from each other in LBE �35�, we can solve Eq. �4� using
any standard numerical scheme. Here we use a second-order
Lax-Wendroff scheme �8,36� to discretize Eq. �9� on the
same lattice,

f�i�x,t + �t� = f�i
+ �x,t� −

A�

2
�f�i

+ �x + ci�t,t� − f�i
+ �x − ci�t,t��

+
A�

2

2
�f�i

+ �x + ci�t,t� − 2f�i
+ �x,t�

+ f�i
+ �x − ci�t,t�� , �15�

where the parameter A� is chosen to be A�=c� /c with c
=
3kBT /m=�x /�t, where m is the reference molecular
weight, �x is the streaming step and �t is the time step. It is
clear that the parameter A� depends on the molecular mass of
species �. Actually, A� is related to the mobility of the mol-
ecule. For heavy molecules, A� is small, but for light mol-
ecules, A� is large. The time step �t should be chosen ac-
cording to some stability requirements as shown in Ref. �8�,

�t 	 min�2.0/s̃�i,�x/
3R�T,�x/
3R��T� . �16�

Considering the discrete lattice effects in LBE, the forcing

term F̃� in Eq. �12� should be redefined as �29�

F̃� = �I −
S�

2
�F̃�, �17�

where S�=diag�s�1 ,s�2 , ¯ ,s�9� with s�i= s̃�i�t being the
nondimensional relaxation rate for species �, and the flow
variables for the mixtures are defined as

�� = �
i

f�i, � = �
�

��, �u = �
�i

c�i f�i +
�t

2 �
�

��a�,

�18�
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III. CHAPMAN-ENSKOG EXPANSION ANALYSIS

A. Hydrodynamic equation

We now analyze the hydrodynamic behavior of the MRT-
LBE presented above using the Chapman-Enskog expansion
procedure �37�. To this end, we first rewrite Eq. �15� as

f�i�x,t + �t� = f�i
+ �x,t� − �t�c�i · ��f�i

+ �x,t�

+
�t2

2
�c�i · ��2f�i

+ �x,t� + O��t3� , �19�

and rewrite Eq. �12� in the velocity space as

f�i
+ = f�i − �tS�ij�f�j − f�j

�eq�� + �tF�i, �20�

With Eqs. �19� and �20�, we can obtain the following
equation up to O��t2�:

D�i f�i +
�t

2
D�i

2 f�i = − S�ij�f�j − f�j
�eq�� + F�i, �21�

where D�i=�t+c�i ·�. Then we introduce the following ex-
pansions:

f�i = f�i
�0� + 
f�i

�1� + 
2f�i
�2� + ¯ , �22�

�t = 
�t1
+ 
2�t2

, � = 
�1, F� = 
F1�, �23�

where 
 is a small parameter. With these expansions, Eq. �21�
can be rewritten in consecutive orders of 
 as

f�i
�0� = f�i

�eq�, O�
0� , �24�

D�i
�1�f�i

�0� = − S�ij f�j
�1� + F1�i, O�
1� , �25�

�t2
f�i

�0� + D�i
�1���Iij −

S�ij

2
� f�j

�1�� = − S�ij f�j
�2�

−
�t

2
D�i

�1�F�i
�1�, O�
2� ,

�26�

where D�i
�1�=�t1

+c�i ·�1.
Multiplying the transformation matrix M on both side of

Eqs. �24�–�26�, we can obtain the following moment equa-
tions:

m�
�0� = m�

�eq�, O�
0� , �27�

��t1
+ M�c� · �1�M−1�m�

�0� = − S̃�m�
�1� + �I −

S�

2
�F̃1�, O�
� ,

�28�

�t2
m�

�0� + ��t1
+ M�c�I · �1�M−1��I −

S̃�

2
�m�

�1� = − S̃�m�
�2�

−
�t

2
��t1

+ M�c�I · �1�M−1��I −
S�

2
�F�, O�
2� .

�29�

With the results of Eqs. �27�–�29�, the following conserva-

tion equations for component � on the first and second or-
ders can be recovered as

Continuity equations,

�t1
�� + �1x���ux� + �1y���uy� = 0, �30�

�t2
�� + �1x��t�1 −

s�4

2
�J�x

�1�� + �1y��t�1 −
s�6

2
�J�y

�1�� = 0,

�31�

Momentum equations,

�t1
���ux� + �1x�p� + ��ux

2� + �1y���uxuy� = − s̃�4J�x
�1� + ��a�x,

�32�

�t1
���uy� + �1x���uxuy� + �1y�p� + ��uy

2� = − s̃�6J�y
�1� + ��a�y ,

�33�

�t2
���ux� + �1x�1

6
�1 −

s�2

2
�e�

�1� +
1

2
�1 −

s�8

2
�p�xx

�1� �
+ �1y��1 −

s�9

2
�p�xy

�1� � = − s�4j�x
�2� − �1 −

s�4

2
��t1

J�x
�1�

− �x��t

2
�1 −

s�2

2
����a�xux + a�yuy�

+
�t

2
�1 −

s�8

2
����a�xux − a�yuy��

− �y��t

2
�1 −

s�9

2
����a�xuy − a�yux�� , �34�

�t2
���uy� + �1x��1 −

s�9

2
�p�xy

�1� � + �1y�1

6
�1 −

s�2

2
�e�

�1�

−
1

2
�1 −

s�8

2
� p�xx

�1�

2
� = − s�6j�y

�2� − �1 −
s�6

2
��t1

J�y
�1�

− �x��t

2
�1 −

s�9

2
����a�xuy − a�yux��

+ �y��t

2
�1 −

s�2

2
����a�xux + a�yuy�

−
�t

2
�1 −

s�8

2
����a�xux − a�yuy�� , �35�

where p�=��R�T is the partial pressure; e�
�1�, p�xx

�1� , p�xy
�1� , j�

�1�,
and j�

�2� are the corresponding moments expansions, i.e., e�

=�k

ke�

�k�=�k

kc�

2m�1
�k�, p�xx=�k


kp�xx
�k� =�i,k


kc�x
2 f�i

�k�, p�xy

=�k

kp�xy

�k� =�i,k

kc�xc�yf�i

�k�, J�
�0�= j�

�0�=0, J�
�1�= j�

�1�=�ic�i f�i
�1�

+��a��t /2, J�
�k�= j�

�k�=�ic�i f�i
�k�, �k�1�, where e� is related to

the total energy, p�� is the partial stress, j� the mass diffu-
sive flux, and J� the effective mass diffusive flux.

To close the hydrodynamic equations at the second order
of 
, the terms of e�

�1�, p�xx
�1� , p�xy

�1� in Eqs. �34� and �35� should
be determined. To this end, we now evaluate the terms of
�t1

���ux
2�, �t1

���uy
2�, and �t1

���uxuy� using Eqs. �30�–�33�, and
obtain that
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�t1
���ux

2� = − 2ux��1xp� + s̃�4J�x
�1� − ��a�x� + O�u3� , �36�

�t1
���uy

2� = − 2uy��1yp� + s̃�6J�y
�1� − ��a�y� + O�u3� , �37�

�t1
���uxuy� = − ux��1yp� + s̃�4J�y

�1� − ��a�y� − uy��1xp�

+ s̃�4J�x
�1� − ��a�x� + O�u3� . �38�

Then s̃�2e�
�1� can be expressed as

s̃�2e�
�1� = − 3s̃�2���a�xux + a�yuy� − 2��c�

2��1xux + �1yuy�

+ 6�s̃�4uxJ�x
�1� + s̃�6uyJ�y

�1�� . �39�

Similarly, we have

s̃�8p�xx
�1� = − s̃�8���a�xux − a�yuy� −

2

3
��c�

2��1xux − �1yuy�

+ 2�s̃�4uxJ�x
�1� − s̃�6uyJ�y

�1�� , �40�

s̃�9p�xy
�1� = −

s̃�9

2
���a�xuy + a�yux� −

1

3
��c�

2��1xuy + �1yux�

+ s̃�6uxJ�y
�1� + s̃�4uyJ�x

�1�. �41�

With Eqs. �39�–�41�, we can obtain the hydrodynamic
equations for the mixtures at t1 and t2 scales,

Continuity equations,

�t1
� + �1 · ��u� = 0, �42�

�t2
� + �1x�

�
��1 −

s�4

2
�J�x

�1�� + �1y�
�
��1 −

s�6

2
�J�y

�1�� = 0,

�43�

Momentum equations,

�t1
��u� + �1 · �pI + �uu� = �

�

��a�, �44�

�t2
��ux� − �1x�����1xux + �1yuy� + ����1xux − �1yuy�

+ �
�
� 1

s�2
−

1

2��s�4uxJ�x
�1� + s�6uyJ�y

�1�� + �
�
� 1

s�8
−

1

2�
��s�4uxJ�x

�1� − s�6uyJ�y
�1��� − �1y�����1xuy + �1yux�

+ �
�
� 1

s�9
−

1

2��s�4uyJ�x
�1� + s�6uxJ�y

�1��� = 0, �45�

�t2
��uy� − �1x�����1xuy + �1yux� + �

�
� 1

s�9
−

1

2
��s�4uyJ�x

�1�

+ s�6uxJ�y
�1��� − �1y�����1xux + �1yuy� − ����1xux − �1yuy�

+ �
�
� 1

s�2
−

1

2
��s�4uxJ�x

�1� + s�6uyJ�y
�1�� − �

�
� 1

s�8
−

1

2
�

��s�4uxJ�x
�1� − s�6uyJ�y

�1��� = 0, �46�

where the shear viscosity and bulk viscosity of the mixture
are defined by

�� = �
�

���� = �
�

p�� 1

s�8
−

1

2
��t = �

�

p�� 1

s�9
−

1

2
��t ,

�47�

�� = �
�

���� = �
�

p�� 1

s�2
−

1

2
��t . �48�

In Eq. �43�, the two terms associated with the diffusive flux
J�

�1� should vanish in order to obtain the correct continuity
equation for the mixture. This can be achieved by setting
s�4=s�6=s4. In the momentum equations �Eqs. �45� and
�46��, the terms associated with J�

�1� can also be neglected
because the diffusion velocities can be assumed to be much
smaller than the averaged velocity, as argued in Ref. �14�. As
such, we can obtain the following mass and momentum con-
servation equations for the mixture by combining Eqs.
�42�–�46� at t1 and t2 scales,

�t� + � · ��u� = 0, �49�

�t��u� + � · ��uu + pI� = � · � + �
�

��a�, �50�

where the pressure and stress of the mixture are given by

p = �
�

p�, � = ����u + ��u�T� − �� � · uI, �51�

where � and � are defined by Eqs. �47� and �48�, respectively.
Therefore, the proposed FD-LBE can be applied to mixtures
with different species viscosities by adjusting s�8.

B. Diffusion equation

In order to obtain the diffusion equation, we first evaluate
the effective mass diffusive flux J�. Using Eq. �30�, we can
rewrite Eqs. �32�, �33�, and �44� as

����t1
u + u · �1u� = − �1p� − s̃4J�

�1� + ��a�, �52�

���t1
u + u · �1u� = − �1p + �

�

��a�. �53�

Then s̃4J�
�1� can be expressed as

s̃4J�
�1� =

�����

�
�a� − a��� − �p� +

�� � p

�
. �54�

The terms on the right hand of Eq. �54� imply three different
driving mechanisms: the difference in the external forces, the
concentration gradients, and the pressure gradients acting on
different species. These driving mechanisms are usually
called forced diffusion, ordinary diffusion, and pressure dif-
fusion, respectively. If there is no external force �a�=a��
=0� and the system is at mechanical equilibrium �p is a con-
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stant�, Eq. �54� can be rewritten in the form of Fick’s law as

�1 −
s4

2
�J�

�1� = − �p�� 1

s4
−

1

2
��t = − �D��� � X�, �55�

where X�=�� /� is the mass fraction of species �, and the
mutual diffusion coefficient D��� is given by

D��� =
�p

n2m�m��
� 1

s4
−

1

2
��t . �56�

As indicated in Eq. �56�, we can obtain the self-diffusivity
for species � as

D�� = R�T� 1

s4
−

1

2
��t . �57�

From Eqs. �47� and �56�, it is clear that the Schmidt number
of the mixture, Sc=� /D���, can be adjusted by tuning s4, s�8,
and s��8.

On the other hand, from Eqs. �30� and �31�, the continuity
equation for species � can be rewritten as

���tX� + u · �X�� = − � · ��1 −
s4

2
�J�� , �58�

and then combining with Eq. �55�, we can get the following
diffusion equation:

���tX� + u · �X�� = � · ��D��� � X�� . �59�

IV. BOUNDARY CONDITIONS

Boundary conditions for LBE method have been studied
extensively �38�. In this work, we will extend the
nonequilibrium-extrapolation method for single-component
flows �39� to the proposed MRT-LBE model.

The basic idea of the nonequilibrium extrapolation can be
interpreted as follows. The distribution function for species �
at a boundary node xB can be decomposed into an equilib-
rium part and a nonequilibrium part, that is

f�i�xB,t� = f�i
�eq��xB,t� + f�i

�neq��xB,t� .

The boundary conditions are then enforced through the
equilibrium part, while the nonequilibrium part is determined
by using certain extrapolation schemes. For instance, for a
boundary where u�xB , t� is known but ���xB , t� is unknown,
we use a temporary density �̄��xB , t� instead of ���xB , t� in
the evaluation of the equilibrium distribution function, i.e.,

�̄��xB,t� = ���xf,t� ,

where xf is the nearest node of xB. As such, the equilibrium
distribution function for species � at xB can be approximated
as

f�i
�eq��xB,t� = f�i

�eq���̄��xB,t�,u�xB,t�� .

For the nonequilibrium part, we can approximate it by the
nonequilibrium part of the neighboring node xf.

f�i
�neq��xB,t� = f�i�xf,t� − f�i

�eq��xf,t� .

Finally, the distribution function for species � at the bound-
ary node xB can be approximated as

f�i�xB,t� = f�i
�eq��xB,t� + �f�i�xf,t� − f�i

�eq��xf,t�� �60�

V. NUMERICAL TESTS

In this section, some numerical tests will be presented to
validate the proposed LBE model. In simulations, the relax-
ation rates are set as follows. For the conserved moment
�species densities�, we take s�1=0, while s�8=s�9 and s�4
=s�6=s4 are determined from the prescribed shear viscosities
and diffusivity, respectively, and the remaining relaxation
rates are all set to be unity.

We first test the shear viscosity � of the model by mea-
suring the decay rate of a sinusoidal perturbation in velocity
with small amplitude. In our simulations, a 128�128 lattice
is used, and periodic boundary conditions are applied to both
directions. The measured shear viscosity in two cases,
namely ma /mb=1 and ma /mb=2 with mb=1.0, Aa=1.0 and
c=10, are shown in Figs. 1 and 2, respectively. It is clearly
seen that � is a function of sa8 and sb8, which agrees well
with the theoretical results given by Eq. �47�. It should be
noted that the shear viscosity in Figs. 1 and 2 are quite dif-
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FIG. 1. Shear viscosity as a function of the relaxation rate sa8

with sb8
−1=0.55, Xa=0.7 and Xb=0.3. Symbols are the FD-MRT re-

sults, and solid lines are the theoretical predictions given by Eq.
�47�.
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FIG. 2. Shear viscosity as a function of the relaxation rate sb8

with sa8
−1=0.55, Xa=0.7 and Xb=0.3. Symbols are the FD-MRT re-

sults, and the solid lines are the theoretical predictions given by Eq.
�47�.
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ferent for the same mass ratios. The reason for this phenom-
enon is that each species has different mass fraction �Xa
=0.7 and Xb=0.3� in our simulations, and as shown by Eq.
�45�, the viscosity � also depends on the species concentra-
tion. Therefore, if Xa�Xb, ��sa8� will be different to ��sb8� in
general.

We now test the self-diffusion coefficient Daa of the pro-
posed LBE model. The test case is the same as that used in
Refs. �13,21�. In simulations periodic boundary conditions
are applied to both directions with a perturbed initial density
distribution along the x direction,

�a�x,0� = �̄a�1 + �a sin�kx�� , �61�

�b�x,0� = �̄b�1 − �b sin�kx�� , �62�

where �̄a=0.64, �̄b=1.15, �a=�b=0.001, and k=2� /L is the
wave number of the perturbation. In this case, the density �a
and �b have the following sine-wave density profiles:

�a�x,t� = �̄a�1 + �a sin�kx��e−Daakx
2t, �63�

�b�x,t� = �̄b�1 − �b sin�kx��e−Dbbkx
2t. �64�

The measured self-diffusivity Daa and the theoretical predic-
tions are shown in Fig. 3 for two cases �ma /mb=1 and
ma /mb=2�. It is seen again that the numerical results agree
well with the theoretical ones given by Eq. �57�. In addition,
we also found that the present LBE exhibits excellent nu-
merical stability. Actually, the computation is still stable even
as ma /mb�106.

To further evaluate the proposed model, two gases with
large different molecular weights diffusing into each other
are also investigated. Initially, we set T=273 K and p0
=1 bar, and the density of each species is assumed to have a
hyperbolic tangent profile �16,21�,

�a�y,t = 0� =
1

2
���ah + �al� + ��ah − �al�tanh� y − H/2

�th
�� ,

�65�

�b�y,t = 0� =
1

2
���bh + �bl� + ��bl − �bh�tanh� y − H/2

�th
�� ,

�66�

where 0	y	H, H is the width of the computational domain
and �th is the thickness of the diffusion profile. In this case,
we study the diffusion between nitrogen and helium gases,
the parameters of these two gases are the same as Ref. �16�,
i.e., the maximum and minimum density values of each spe-
cies are �ah=1.250 kg /m2, �bh=0.179 kg /m2, �al
=0.0007 kg /m2 and �bl=0.0001 kg /m2 with �th=0.05 mm,
and the binary diffusivity of helium and nitrogen at this tem-
perature is Dab=0.632 cm2 /s. In our simulations, a lattice of
size Nx�Ny =10�500 is employed, and the corresponding
lattice spacing and time step are �x=2 �m and �t=3 ns,
respectively. Periodic boundary condition is applied to the x
direction and the nonequilibrium-extrapolation method is ap-
plied to the horizontal boundaries.

In Fig. 4, the density distributions of both species pre-
dicted by the proposed MRT-LBE model are compared with
the results of the Ref. �16� at t=0, 0.02, 0.05, and 0.1 ms,
respectively. It is observed from Fig. 4 that both numerical
solutions are in excellent agreement, indicating that the dif-
fusion phenomena can be correctly described by the present
model. Nevertheless, we found that the mass ratio and the
thickness �th have influences on the numerical stability. For
instance, when the thickness is set to be �th=0.05 mm, the
computation is stable even as ma /mb�104. However, as
�th=10−30 mm, the computation becomes unstable as
ma /mb�95.

We also test the proposed LBE model using a mixture
with a sharp interface. The mass ratio is set to be as high as
mb /ma=500. The initial conditions are the same as the Ref.
�18� but the diffusivity is Dab=0.05. Initially the molar con-
centration Y�=n� /n is given by

Ya = 90%, Yb = 10% if y � 0,

Ya = 10%, Yb = 90% if y � 0. �67�

The boundary conditions and grid resolution are the same as
those used in the above smooth profiles test. For this case,
the analytical transient solution is �18�
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FIG. 3. Self-diffusivity as a function of the relaxation rate. Sym-
bols are the FD-MRT results, and solid lines are theoretical predic-
tions given by Eq. �57�.
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FIG. 4. Density profiles of the species at different times. Sym-
bols are the FD-MRT results, and solid lines are the predictions of
Ref. �16� at t=0, 0.02, 0.05, and 0.1 ms, respectively.
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Y� =
1

2
+

�Y�

2
erf� y

2
D���t
� , �68�

where �Y� is the initial fraction difference, and erf is the
error function. The comparison between the numerical re-
sults and the analytical solutions are presented in Fig. 5, and
good agreement is observed. However, it is found that when
the initial concentration difference of the two species is
above a critical value, say Ya=92% and Yb=8%, numerical
instability will occur.

Finally, we investigate the achievable Schmidt number of
the proposed LBE. A mixture flow of two species with iden-
tical molecular weights between two parallel plates is con-
sidered. Initially, the species concentration is given by Eq.
�60�. The flow is driven by external forces aa=ab= �ax ,ay�
= �0.0001,0�. Simulations are carried out on a 4�200 mesh.
Periodic boundary condition is applied to the x direction and
nonslip boundary condition is applied to the two horizontal
walls.

It can be shown that the barycentric velocity of this flow
is

u =
axH

2�
y�1 −

y

H
� . �69�

With this analytical solution, we can measure the kinematic
viscosity following the idea of Refs. �20,40�. The mutual
diffusivity can be obtained by fitting the numerical data us-
ing a function of the form Eq. �68�.

In our tests the following values of � and Dab are used:

� = �0.1,1,3,5,10,15,20,25� , �70�

Dab
−1 = �0.001,10,20,40,60,80,100,120� , �71�

The measured Schmidt numbers are shown in Fig. 6, where
the corresponding transport coefficients is marked when the
numerical error between measured coefficients and the given
values �Eqs. �70� and �71�� is lower than 5%. It is found that
the measured Schmidt number is reliable in a large range. We
also investigate the case of ma /mb=20 with �=1, and found
that the computation is stable as Sc�0.012.

VI. SUMMARY

In this paper, we have proposed a FD-LBE model for
binary mixtures. The model has two distinctive features in
comparison with previous LBE models. First, the streaming
process is realized based on a Lax-Wendroff scheme, and
thus particles with different molecular weights can stream on
the same lattice. Second, owing to the use of the MRT col-
lision operator, the model can be applied to the mixtures with
different individual viscosities and adjustable Schmidt num-
ber.

Some numerical simulations have been carried out to vali-
date the proposed model. It is found that the numerical re-
sults are in excellent agreement with the analytical solutions
and/or other numerical results. It is also demonstrated that
the present LBE model has a good numerical stability and is
insensitive to the mass ratio.
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